積拓撲各本之異

跳至導覽 跳至搜尋
未譯之文,勿置於斯
Itsmine
(未譯之文,勿置於斯)
{{當代數學}}
'''積拓撲''',[[拓撲]]之積也。[[直積]]合積拓撲,曰'''積空間'''。
 
 
== 定義 ==
 
有[[拓撲空間]][[族 (數學)|族]]({X<sub>i</sub>}),得其直積(&Pi;X<sub>i</sub>)。積拓撲者,直積之[[拓撲分類|最粗拓撲]],以令直積往族中拓撲空間之[[投影]](&Pi;X<sub>i</sub> &rarr; X<sub>j</sub>, (x<sub>i</sub>)&rarr;x<sub>j</sub>)皆[[連續]]也。
 
若[[族 (數學)|指標集]]為有限,則拓撲之直積為積拓撲之[[準基]]也。
 
<!-- === 性 ===
 
=== 性 ===
 
* [[T0空間|T<sub>0</sub>空间]]之積乃T<sub>0</sub>。
* [[緊集|緊]]空間之積乃緊([[Tychonoff定理]])。
* [[連通]]空間之積必連通。
* [[道路連通]]空間之積必道路連通。! -->
 
 
== 例 ==
*二實數集之積空間為平面,三實數集之積空間為三維空間,四實數集之積空間為四維空間,類推可也。
*二單位[[區間]]之積空間為[[正方形]],三單住區間之積空間為[[立方體]]。
 
 
{{拓撲術語}}
二七七三六