註︰蓋當今數學之事,誠難僅以文述,而無符號,故凡數學之文,咸有漢字、拉丁字相易之事,以合文言、數學,則無論文理之人,皆可明之也。
康托爾定理云:「集之基數,小于其幕集。」觀自然數,數甲小于二之甲次方也(「」)。
觀乎自然數集,其幕集之基數同乎實數集。康托爾得對角線證明法,知實數集不可數。康氏取此法精粹,推而廣之,遂得證康托爾定理。
集甲之基數小于其幕集者,謂甲映射幕集,必非滿射也。(「」)
今取甲映射幕集。甲之元素非己象之屬者,聚以成一大集。凡甲之物,或屬大集,或不然。若然,則非己象之物,故己屬于大集去己象,可知大集異於己象;若非,則乃己象之物,故己屬于己象去大集,可知大集異於己象也。是以甲物之象必異於大集,故映射非滿射也。
(以數式示之如下︰「。。
。
;
。
」)