跳至內容

質數分佈定理

文出維基大典

質數分布定理,所以究質數之分佈。

定理一[]

質數之以無窮

嚴證[]

假設質數有窮,則有

p即質數(prime number)

令諸質數相乘,復加壹,得r

令r除以質數,得

,故r屬質數,有悖於假設,故題得證。

定理二[]

質數皆相隣於,且除外。

[]

同理

故命題得證

十進制

2,3,5,7,11,13,17,19,etc

六進制

2,3,5,11,15,21,25,31,etc

定理三[]

質數漸稀

[]

由定理二可知

且謂之質數分布缺陷,且缺陷可無限耦合疊加,故命題得證。

兼查[]