二元運算

文出維基大典
往:
註︰蓋當今數學之事,誠難僅以文述,而無符號,故凡數學之文,咸有漢字、拉丁字相易之事,以合文言、數學,則無論文理之人,皆可明之也。

二元運算者,四則之抽象也。

定義[]

二元運算者(「o」),集與已之直積映射己也(「o:A × A → A」)。加減乘除,皆二元運算也。甲(a)運算乙(b)而得丙(「aob=c」,即o(a,b)),則曰甲為被運算數(古稱實數),乙為運算數(古稱法數)。廣群者,有二元運算之代數結構也。[一]

若無固定名稱,多以乘法或加法稱之。且以乘法語之。

單位元[]

有元素(「e」),凡乘物或乘以物,皆得物,曰單位元(「e o x = x o e = x」)。加法之單位元,曰「零」;乘法之單位元,曰「一」。

結合律[]

若甲乙之積乘丙,同乎甲乘乙丙之積(「x o (y o z) = (x o y) o z」),則曰二元運算合結合律也。

其廣群曰半群。若有單位元,則曰半么群也。

交換律[]

若甲乘乙必同乎乙乘甲(「x o y = y o x」),則曰二元運算合交換律也。

分配律[]

若加、乘皆二元運算,且有

  • 甲乘乙丙之和,同乎甲乙之積加甲丙之積,曰左分配律。(「x × ( y + z ) = x × y + x × z」[二]
  • 甲乙之和乘丙,同乎甲丙之積加乙丙之積,曰右分配律。(「(x + y) × z = x × z + y × z」)

則謂加乘二法合分配律也。

[]

  1. 另有代數結構曰廣群
  2. 依習,先乘除後加減。