「二元運算」:各本之異

文出維基大典
[底本][底本]
刪去的內容 新增的內容
Itsmine
無編輯摘要
Wshun~zh-classicalwiki
→‎定義  單位元
第五行: 第五行:


'''二元運算'''者(「o」),集與已之直積[[映射]]己也(「o:A &times; A &rarr; A」),多以乘法或加法稱之,而凡甲乙之象,曰甲乘乙或甲加乙(「o(a,b) = a o b」)。且以乘法語之。'''廣群'''者,有二元運算之[[代數結構]]也。<ref>另有代數結構曰[[廣群]]。</ref>
'''二元運算'''者(「o」),集與已之直積[[映射]]己也(「o:A &times; A &rarr; A」),多以乘法或加法稱之,而凡甲乙之象,曰甲乘乙或甲加乙(「o(a,b) = a o b」)。且以乘法語之。'''廣群'''者,有二元運算之[[代數結構]]也。<ref>另有代數結構曰[[廣群]]。</ref>

== 單位元 ==

有元素(「e」),凡乘物或乘以物,皆得物,曰單位元(「e o x = x o e = x」)。加法之單位元,曰「零」;乘法之單位元,曰「一」。


===結合律===
===結合律===
第一〇行: 第一四行:
若甲乙之積乘丙,同乎甲乘乙丙之積(「x o (y o z) = (x o y) o z」),則曰二元運算合'''結合律'''也。
若甲乙之積乘丙,同乎甲乘乙丙之積(「x o (y o z) = (x o y) o z」),則曰二元運算合'''結合律'''也。


其廣群曰'''半群'''。有元素曰「一」(「1」),凡物乘「一」或物乘以「一」皆為己(「1 o x = x o 1 = x」),則曰'''半么群'''也。
其廣群曰'''半群'''。單位元,則曰'''半么群'''也。


===交換律===
===交換律===

二〇〇七年一〇月三一日 (三) 一二時一三分審

註︰蓋當今數學之事,誠難僅以文述,而無符號,故凡數學之文,咸有漢字、拉丁字相易之事,以合文言、數學,則無論文理之人,皆可明之也。

二元運算者,四則之抽象也。

定義

二元運算者(「o」),集與已之直積映射己也(「o:A × A → A」),多以乘法或加法稱之,而凡甲乙之象,曰甲乘乙或甲加乙(「o(a,b) = a o b」)。且以乘法語之。廣群者,有二元運算之代數結構也。[一]

單位元

有元素(「e」),凡乘物或乘以物,皆得物,曰單位元(「e o x = x o e = x」)。加法之單位元,曰「零」;乘法之單位元,曰「一」。

結合律

若甲乙之積乘丙,同乎甲乘乙丙之積(「x o (y o z) = (x o y) o z」),則曰二元運算合結合律也。

其廣群曰半群。若有單位元,則曰半么群也。

交換律

若甲乘乙必同乎乙乘甲(「x o y = y o x」),則曰二元運算合交換律也。

分配律

若加、乘皆二元運算,且有

  • 甲乘乙丙之和,同乎甲乙之積加甲丙之積,曰左分配律。(「x × ( y + z ) = x × y + x × z」[二]
  • 甲乙之和乘丙,同乎甲丙之積加乙丙之積,曰右分配律。(「(x + y) × z = x × z + y × z」)

則謂加乘二法合分配律也。

  1. 另有代數結構曰廣群
  2. 依習,先乘除後加減。