稿:坐標幾何

文出維基大典
跳至導覽 跳至搜尋

[]

古希臘疇人梅內克繆斯的解題、證明方式與現在使用坐標系十分相似,以至於有時會認為他是解析幾何的鼻祖。阿波羅尼奧斯在《論切觸》中解題方式在現在被稱之為單維解析幾何;他使用直線來求得一點與其它點之間的比例。阿波羅尼奧斯在《圓錐曲線論》中進一步發展了這種方式,這種方式與解析幾何十分相似,比起笛卡兒早了1800多年。他使用了參照線、直徑、切線與現進所使用坐標系沒有本質區別,即從切點沿直徑所量的距離為橫坐標,而與切線平行、並與數軸和曲線向交的線段為縱坐標。他進一步發展了橫坐標與縱坐標之間的關係,即兩者等同於誇張的曲線。然而,阿波羅尼奧斯的工作接近於解析幾何,但它沒能完成它,因為他沒有將負數納入系統當中。在此,方程是由曲線來確定的,而曲線不是由方程得出的。坐標、變量、方程不過是一些給定幾何題的腳註罷了。

十一世紀波斯帝國數學家歐瑪爾·海亞姆發現了幾何與代數之間的密切聯繫,在求三次方程使用了代數和幾何,取得了巨大進步。但最關鍵的一步由笛卡兒完成。

從傳統意義上講,解析幾何是由勒內·笛卡兒創立的。笛卡兒的創舉被記錄在《幾何學》當中,在1637年與他的《方法論》一道發表。這些努力是以法語寫成的,其中的哲學思想為創立無窮小提供了基礎。最初,這些著作並沒有得到認可,部分原因是由於其中論述的間斷,方程的複雜所致。直到1649年,著作被翻譯為拉丁語,並被馮·斯霍滕恭維後,才被大眾所認可接受。

費馬之於坐標幾何,亦云有功。嘗作《平面與立體軌跡引論》,雖未於生前刊行,但手稿於1637年在巴黎出現,恰於笛卡爾之《方法論》前。《引論》文字清晰,獲得好評,為解析幾何提供了鋪墊。費馬與笛卡兒方法的不同在於出發點。費馬從代數公式開始,然後描述它的幾何曲線,而笛卡兒從幾何曲線開始,以方程的完結告終。結果,笛卡兒的方法可以處理更複雜的方程,並發展到使用高次多項式來解決問題。